Poisson Hopf algebra related to a twisted quantum group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum deformations of the Lorentz group . The Hopf ∗ - algebra level

Three properties characteristic for the Lorentz group are selected and all quantum groups with the same properties are found. As a result, a number of one, two and three parameter quantum deformations of the Lorentz group are discovered. The deformations described in [1] and [2] are among them. Only the Hopf ∗-algebra level is discussed.

متن کامل

The Quantum Double as a Hopf Algebra

In the last lecture we have learned that the category of modules over a braided Hopf algebra H is a braided monoidal category. A braided Hopf algebra is a rather sophisticated algebraic object, it is not easy to give interesting nontrivial examples. In this text we develop a theory that will lead to a concrete recipe which produces a nontrivial braided Hopf algebra D(A) (called Drinfeld’s quant...

متن کامل

The Hopf Algebra of a Uniserial Group

Let k be an algebraically closed field of characteristic p > 0. The purpose of this paper is to describe the Hopf algebra of a finite commutative infinitesimal unipotent k-group scheme which is uniserial, i.e., which has a unique composition series. As there is only one simple finite commutative infinitesimal unipotent group scheme (namely αp := ker {F : Ga → Ga} , with Ga being the additive gr...

متن کامل

The Brauer Group of a Hopf Algebra

Let H be a Hopf algebra with a bijective antipode over a commutative ring k with unit. The Brauer group of H is defined as the Brauer group of Yetter–Drinfel’d H-module algebras, which generalizes the Brauer–Long group of a commutative and cocommutative Hopf algebra and those known Brauer groups of structured algebras.

متن کامل

Quantum field theory meets Hopf algebra

This paper provides a primer in quantum field theory (QFT) based on Hopf algebra and describes new Hopf algebraic constructions inspired by QFT concepts. The following QFT concepts are introduced: chronological products, S-matrix, Feynman diagrams, connected diagrams, Green functions, renormalization. The use of Hopf algebra for their definition allows for simple recursive derivations and lead ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2016

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2016.1175451